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Abstract

Since emerging into the human population in late 2019, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has reached across the globe to infect >80 million people. The coronavirus disease 2019
(COVID-19) caused by SARS-CoV-2 can range in severity from mild and asymptomatic to severe and fatal.
Identifying risk factors for adverse outcomes in COVID-19 is a major challenge. In the context of the existing
HIV-1 pandemic, whether COVID-19 disproportionately burdens people living with HIV-1 infection (PLWH)
is unclear. The following discussion highlights pressing questions and challenges in the HIV-1 and SARS-CoV-2
syndemic, including (i) age, sex, and race as drivers of COVID-19 severity; (ii) whether chronic inflammation
common in PLWH influences immune response; (iii) whether disease severity and trajectory models for
COVID-19 ought to be calibrated for PLWH; (iv) vaccine considerations, and finally, (v) long-term health
outcomes in PLWH that are further burdened by coinfection with SARS-CoV-2.
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Introduction

Unbeknown to anyone at the time, the coronavirus
disease 2019 (COVID-19) pandemic began in late De-

cember 2019 when a novel coronavirus was isolated in Wuhan,
China and sequenced in early January 2020 (isolate Wuhan-
Hu-1).1 Over the next 2 months, highly related coronavirus
isolates were identified in the United States (WA1 in Seattle,
Washington; UC4 in San Francisco Bay Area, California;
NY1-PVC8001 in New York City) and in Europe (BavPat1 in
Munich, Germany).2,3 Within the span of a few months (De-
cember 2019 to April 2020), several 1,000 severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus
isolates were identified, all sharing genetic relatedness to
SARS-CoV, first identified in 2011, but distinct enough to
form their own evolutionary cluster. Over this first year (De-
cember 2019 to December 2020) of the SARS-CoV-2 pan-
demic, >80 million people worldwide were infected, with
global mortality totaling 2 million deaths.4 By comparison, the
HIV-1 pandemic has taken nearly 35 years (1984–2019) to
infect an equivalent 80 million people worldwide, has sus-
tained 30 million deaths in total, and 700,000 deaths in this
past year alone.5 Thus, at present, there is a syndemic of 40
million people living with HIV-1 infection (PLWH) and 100
million with SARS-CoV-2 infection worldwide.4

In contrast with HIV-1 infection, which is nearly always fatal
in the absence of potent antiretroviral therapy (ART), outcomes
from SARS-CoV-2 infection are more heterogeneous, with
*10%–20% of infections leading to severe clinical conditions
and 1%–10% resulting in death within 2–3 weeks of infection.
Although SARS-CoV-2 outcomes remain unpredictable for an
individual, emerging research has identified populations at
higher risk for severe disease outcomes once infected, including
older age (>65 years old),6,7 male sex,8,9 and persons with pre-
existing conditions like cardiovascular disease and obesity.6,10

Whereas combination antiretroviral therapy (cART) has had a
positive impact on PLWH life expectancy, it is not curative and
importantly does not restore full immunocompetence.11,12 The
extent to which PLWH experience adverse outcomes upon co-
infection with SARS-CoV-2 is an active area of investigation.
Initial results based on smaller cohort studies were inconclusive,
but more recent and larger cohort studies suggest that COVID-19
mortality is higher in PLWH than in the general population. For
example, a meta-analysis of five cohort studies13–17 indicated
that overall COVID-19-related deaths in PLWH were nearly
double that of persons without HIV-1 infection.18 A study of
24,000 persons in South Africa reported that mortality rates were
doubled in PLWH.14 Similarly, a study of 17 million persons in
the United Kingdom, including 27,000 PLWH, also showed a
higher mortality rate in PLWH, especially among Black
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persons.13 Explanatory factors may include biological and so-
ciological factors such as restricted access to health care re-
sources (needle exchange, counseling, and mental health
services) and health delivery infrastructure (transit, continuity of
care, adherence to antiretroviral therapy [ARV], and pre-
exposure prophylaxis [PrEP] distribution) that resulted from
public measures in response to COVID-19.19,20

What follows is a discussion of challenges in the HIV-1 and
SARS-CoV-2 syndemic, including (i) the role of age, sex, and
race as drivers or risk factors for COVID-19; (ii) whether
chronic inflammation common in PLWH influences response;
(iii) whether models for severity and trajectory of COVID-19
may differ in PLWH; (iv) vaccine considerations; and finally,
(v) long-term health outcomes in PLWH that are further bur-
dened by coinfection with SARS-CoV-2 (Table 1).

Question 1: Are Biological Aging, Sex, and Race
Drivers of COVID-19 Severity?

Role of biological age

Multiple studies indicate that age is a major risk factor for
COVID-19 hospitalization and mortality. The Centers for

Disease Control (CDC) estimate that the rate ratios of persons
50–85 years of age can be 4- to 8-fold higher for risk of
hospitalization and 30- to 220-fold higher for risk of death
compared with persons 18–29 years of age; and in persons
85 years or older, a 13-fold higher hospitalization risk and
630-fold higher death rate were observed.21

Because PLWH are older than the general population,
with <50% of PLWH older than the age of 50, compared
with 34% of those older than 50 years in the general pop-
ulation, PLWH may be at increased risk for age-related
COVID-19 complications. In the absence of SARS-CoV-2
infection, PLWH are already burdened by greater impair-
ments in physical and cognitive function at ages younger
than expected,22–25 higher levels of chronic immune acti-
vation and inflammation,26 and multimorbidity compared
with uninfected persons.27–29 The many recent advances in
our understanding of basic mechanisms of biological ag-
ing30 coupled with the emerging field of geroscience31

should provide insights into the observed age-related de-
cline in immune function in the general population32 and in
PLWH.33,34 These advances should empower investigations
into whether age-related complications in PLWH reflect

Table 1. Pressing Questions and Challenges in HIV-1 and SARS-CoV-2 Syndemic

Question 1: Are biological aging, sex and race drivers of COVID-19 severity?
Challenges:
� Identifying specific age-related mechanisms dysregulated in PLWH with and without SARS-CoV-2 infection
� Creating sex-specific immune profiles in PLWH with SARS-CoV-2 coinfection
� Determining role for sex hormones in infection risk, disease outcomes, and response to immunomodulatory treatment
� Removing racially based structural inequities and community/workplace exposure to reduce risk for infection,

hospitalization, and mortality
� Inclusion of race in prioritizing populations for treatment, prophylaxis, and vaccination efforts

Question 2: Do inflammation and immunocompetence in PLWH alter the course of COVID-19?
Challenges:
� Determining impact of chronic low-grade inflammation in PLWH on (a) infection with SARS-CoV-2, (b) severity of

COVID-19 once PLWH are infected, and (c) recovery and potential long-COVID-19
� Determining the disease severity and time to recovery from COVID-19 in PLWH
� Measuring the kinetics and compositional profiles of immune response, for example, protective serological

neutralization landscape, comparative cellular RNA sensing pathways (NF-jB, interferons, inflammasome), leukocyte
coordination, T cell-mediated viral clearance

Question 3: Should we adapt the COVID-19 model for disease staging and trajectory for PLWH?
Challenges:
� Optimizing models for COVID-19 disease progression in PLWH in relation to age, sex, race, and ethnicity, especially

in the context of prevalent comorbid burdens such as chronic inflammation
� Defining immune phenotypes that guide immunomodulator treatment, including treatment dosage and timing of

intervention
� Identifying interactions between ART regimens and COVID-19 treatments

Question 4: Will assumptions about vaccine safety and efficacy hold up in PLWH?
Challenges:
� Determining whether COVID-19 vaccines are permissive (or not) for asymptomatic viral carriage, allowing

SARS-CoV-2 viremia to persist in PLWH and in HIV-uninfected
� Inclusion of PLWH in COVID-19 vaccine trials, surveillance studies, and clinical outcome assessments
� Developing deep serological profiles, as well as evaluation of kinetics of waning immunity, viral clearance and

memory function, especially among older PLWH and in HIV uninfected
� Quantifying vaccine efficacy and disease outcomes from vaccination in aging PLWH compared with older

HIV-uninfected persons and other groups
Question 5: Post-COVID-19 syndrome and long-term health effects in PLWH?

Challenges:
� Developing consensus definitions of long-COVID-19/postacute COVID-19 syndrome and disease trajectory profiles in

PLWH and in HIV uninfected
� Distinguishing COVID-19-related fatigue from age-related fatigue and from chronic fatigue syndrome/myalgic

encephalomyelitis (i.e., CFS) in PLWH and in HIV uninfected

ART, antiretroviral therapy; COVID-19, coronavirus disease 2019; PLWH, people living with HIV-1 infection; SARS-CoV-2, severe
acute respiratory syndrome coronavirus-2.
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accelerated, accentuated, or asynchronous biological aging
and similarly, whether biological aging mechanisms are
dysregulated in COVID-19.35,36

Biomarkers for COVID-19 severity have been recently
found to differ in association with age in a Boston cohort.37

Whether COVID-19 impacts the severity of age-related co-
morbid conditions in PLWH remains unclear and will require
longitudinal follow-up in older PLWH, with and without
SARS-CoV-2 coinfection. Whether recovery may be slower
in older PLWH or whether persistence of longer term
COVID-19-related phenotypes will occur in PLWH will also
needs to be determined to optimize medical care and ulti-
mately healthspan. Finally, because age-related attenuation
of vaccine response in PLWH has been observed with flu
vaccination,38,39 this may impact efficacy of prophylactic
SARS-CoV-2 vaccination in PLWH (although Pfizer and
Moderna data show no age-related decrease in vaccine effi-
cacy in their studies in the general population).

Role of gender and sex hormones

Men between 40 and 70 years of age infected with SARS-
CoV-2 tend to have more severe disease progression than
women of the same age group9,40–44 and in some reports
nearly twice the risk of death.8,45 Determining the factors
contributing to the higher risk for men has been hampered as
data are often presented as aggregate outcomes without direct
access to underlying demographic data.45 Nevertheless, bi-
ological sex-specific risk factors likely include differences in
immune response to infection, sex hormones as immuno-
modulatory effectors, sex-specific prevalence of comorbid
conditions (e.g., hypertension and cardiovascular disease),
and biobehavioral differences (e.g., smoking and drinking).44

The Iwasaki lab recently identified male-associated increases
in cytokine levels (e.g., IL-8 and IL-18) and more robust
induction of nonclassical monocytes, whereas in women
more robust CD8 T cell increases were observed.46 Women
also appear to display increased neutrophil activity and ele-
vated expression of type 1 interferon-stimulated genes that
enhance innate immune Toll-like receptor responses.47

The primary cellular receptor and coreceptor for SARS-
Co-V2 infection are the angiotensin-converting enzyme 2
(ACE2) and the transmembrane protease serine 2 (TMPRSS2),
respectively.48 ACE2 tends to be elevated in men compared
with women and is associated with androgen expression lev-
els.49 Drug screening has also identified androgen signaling as a
potential key modulator of ACE2 levels.50 The coreceptor
TMPRSS2 also appears to be androgen responsive.51 Low
testosterone levels in men are associated with more severe
SARS-CoV-2 infection,52,53 and estradiol levels were associ-
ated with interferon response.53 In prior studies, low testoster-
one levels have been associated with elevated proinflammatory
cytokines in men.54,55 Androgen deficiency and dysregulation
of testosterone activity through sex hormone-binding globulin
occur frequently in men with HIV-1 infection,56,57 raising the
possibility that androgen dysregulation in the context of HIV-1
infection may impact ACE2/TMPRSS2 pathways. Although
provocative, whether low testosterone levels are cause or con-
sequence in COVID-19 severity in men, and whether indirect
regulation of inflammatory and interferon response by sex
hormones play a role in COVID-19 host response and disease
severity remains unclear.

By contrast with COVID-19, among PLWH, women ex-
perience greater mortality than men58 and women living with
HIV have higher rates of multimorbidity than male PLWH.59

In addition, women living with HIV progress to death at the
same rate as men despite lower plasma HIV-RNA levels,
suggesting different sex-associated risk profiles for PLWH.60

Of note, despite equivalent ART-induced viral suppression,
women living with HIV infection display less reduction in
key markers of inflammation and immune activation com-
pared with men.61,62 Collectively, these observations high-
light the need to define risk profiles and disease trajectories
for men and women infected with HIV-1 and in those coin-
fected with SARS-CoV-2 to identify sex-specific and
hormone-specific risk profiles for clinical outcomes based on
gender and biological sex.

Role of race and ethnicity

Black and Latinx populations have disproportionately
higher rates of SARS-CoV-2 infection, hospitalization, and
COVID-19-related mortality, based on studies in the United
States and the United Kingdom.63–65 The CDC estimates that
Black and Latinx persons experience approximately twofold
higher cases, fourfold higher hospitalizations, and threefold
higher deaths, compared with non-Hispanic White persons.66

In multivariable analysis of a large cohort in Louisiana, black
race, increasing age, multimorbidity, public insurance
(Medicare or Medicaid), residence in a low-income area, and
obesity were factors associated with increased hospitaliza-
tion.64 Access to health care and community exposure to
infection may also contribute to these disparities.63,67 Once
hospitalized, differences in mortality appear to become less
significant, suggesting that structural determinants likely
explain the disproportionate infections and deaths from
COVID-19,68 underscoring the need for improved and eq-
uitable health care access.69

Among PLWH, similarly to COVID-19, Black and Latinx
individuals have higher rates of HIV-1/AIDS-related mor-
bidity and mortality compared with other racial and ethnic
groups.70 Increased disease burden is not restricted to PLWH,
because non-HIV-infected Black and Latinx individuals
also have higher rates of age-related functional decline and
disability.71–73 Collectively, the differential risk for infec-
tion, hospitalization, and mortality may be owing to struc-
tural inequities, community, and workplace exposure and
comorbid burden. Because Black and Latinx populations are
more vulnerable than White populations to adverse outcomes
from infection with SARS-CoV-2 and HIV-1, this should be a
consideration when prioritizing populations for treatment,
prophylaxis, and vaccination trials and rollout, as efficacious
therapies and vaccines become available.

Question 2: Does Inflammation
and Immunocompetence in PLWH Alter
the Course of COVID-19?

Acute SARS-CoV-2 infection, when severe, can lead to an
acute respiratory distress syndrome,74 a respiratory condition
characterized by rapid and excessive inflammation of the
lungs,75 with an imbalanced increase in inflammatory infil-
trates including leukocytes, cytokines, and chemokines de-
tectable in the lungs76 and in peripheral blood.77–84 Levels of
inflammation are dynamic over the course of disease, with
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changes in inflammatory levels related to the stage of dis-
ease85 and viral burden.86 Inflammatory drivers include in-
filtrating leukocytes,87,88 with activation of RNA-sensing
interferon and NF-jB-driven pathways,80 and inflammasome
and pyroptosis-mediated cell death and cytokine release.89

Of note, inflammation is a hallmark driver of biological
aging,30,90 resulting in increased fatigue, declines in walking
speed and increased disability, adversely affecting physical
function and healthy aging.90–96 In the context of HIV-1,
PLWH continue to have chronic low-grade inflammation
compared with HIV-uninfected persons, despite undetectable
viremia. For example, compared with the uninfected, PLWH
on effective ART show persistent elevations in IL-6, TNF,
sCD14, sCD163, CRP, and MCP-1 levels in peripheral
blood.26,97–102 This observed HIV-associated inflammation is
linked to adverse functional outcomes.29,103–105

Many questions remain unanswered. Does chronic in-
flammation in older PLWH increase susceptibility of PLWH
to more severe outcomes with COVID-19? Does chronic
inflammation accelerate increases in SARS-CoV-2 viral
burden once PLWH are infected? Does chronic inflammation
influence disease severity and progression, as well as sub-
sequent time to resolution of SARS-CoV-2 infection? Be-
cause biological aging is associated with mechanistic
changes in innate and adaptive immune signaling and im-
mune response,106 and chronic inflammation drives dysre-
gulation between biological and chronological aging,107

there is a need to better understand whether people aging with
HIV-1 infection differ from the general population in their
coordination of immune response, leukocyte composition,
timing and dynamics of response, and cell signaling upon
SARS-CoV-2 infection.

Clinical research efforts to effectively control COVID-19
will need a better understanding of risk factors for infection
and, once infected, a more precise alignment between severity
of disease and underlying immunophenotypes. Evidence to
date indicate that risk factors influencing susceptibility to
SARS-CoV-2 infection are multilayered and complex, rang-
ing from cell and tissue expression of the viral target receptor/
coreceptor pair (i.e., ACE2/TMPRSS2) to the environment
(exposure within communities with higher SARS-CoV-2
prevalence, such as densely crowded spaces with prevalent
infections, hospitals, or nursing homes). Clinical variability of
COVID-19 represents a major challenge in risk assessment,
with disease presentation ranging from asymptomatic infec-
tion with viral carriage possibly persisting to critical disease
and death. Moderate and more severe COVID-19 can involve
multisystem organ complications of the lungs, gut, heart, and
brain. Efforts to characterize COVID-19 trajectory into stages
begin with acute infection and inflammation, followed by a
hyperinflammatory stage (2–5 weeks after symptom onset)
distinct from the acute inflammatory phase and associated
with coagulopathy and multisystem inflammatory syndromes
in adults and children, and a late sequelae stage (4+ weeks
postsymptom onset).108,109 Operational categories for
COVID-19 severity include a mild category (i.e., asymptom-
atic carriage of virus without manifestations of pneumonia on
imaging), a moderate category (i.e., fever, respiratory symp-
toms, and radiologic findings of pneumonia), a severe cate-
gory (i.e., respiratory distress, hypoxia, or abnormal blood
gas), and a critical category (respiratory failure requiring
mechanical ventilation and organ failure requiring intensive
care).85 How each of these stages in SARS-CoV-2 disease
sequelae may differ in PLWH remains unclear (Fig. 1).

FIG. 1. (1) SARS-CoV-2 infection of susceptible cells mediated by ACE2 and TMPRSS2. The infection of susceptible
host cells by SARS-CoV-2. Potential dysregulation in sex hormone regulation and levels of inflammatory factors commonly
observed in PLWH may impact SARS-CoV-2 receptor/coreceptor levels on susceptible cells, leukocyte trafficking at
mucosal surfaces, and viral replication amplitude and duration once cells are infected. (2) Innate viral RNA sensing. Acute
and innate viral RNA sensing in key cell subsets (e.g., macrophages) may be attenuated in PLWH, with aggravated
activation of inflammatory factors and insufficient interferon type 1 responses, that phenocopy age-related response to other
respiratory pathogens (e.g., flu). (3) Viral replication and expansion. The replication of SARS-CoV-2 depends, in part, on
access to replication competent cells and host mechanisms limiting viral expansion. Leukocyte trafficking to mucosal sites,
immune activation, and clearance of infected cells may be altered or impaired in PLWH. (4) Adaptive response. A coor-
dinated response of innate and adaptive mechanisms necessary to control SARS-CoV-2 infection may be altered or
attenuated in PLWH for whom immunocompetence is incomplete, despite effective ART. (5) Multisystem inflammatory
syndrome. The chronic dysregulation of inflammatory pathways and multimorbidity that are common in PLWH may
influence the composition and magnitude of inflammatory response, as well as time-to-resolution and recovery. (6) Post-
acute COVID-19 syndrome. Persistence of SARS-CoV-2 in mucosal sites (e.g., gut) may differ in PLWH because dys-
regulated mucosal immunity in the gut is common. In addition, chronic fatigue and cognitive deficits common in PLWH
may be aggravated in postacute COVID-19 syndrome. ACE2, angiotensin-converting enzyme 2; ART, antiretroviral
therapy; COVID-19, coronavirus disease 2019; PLWH, people living with HIV-1 infection; SARS-CoV-2, severe acute
respiratory syndrome coronavirus-2; TMPRSS2, transmembrane protease serine 2.
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The successful control of COVID-19 likely requires im-
mune system coordination of innate responses to infection,110

as well as adaptive SARS-CoV-2 antigen-specific antibody,
CD4+ T cell, and CD8+ T cell immune responses.84,111 In
addition, innate immune response by monocyte subsets (e.g.,
expansion of intermediate monocytes and nonconventional
monocytes) contribute to COVID-19 severity,83,112 under-
scoring the need for coordination between innate and adap-
tive responses.83,112 Dysregulated immune coordination may
attenuate successful viral protection by neutralizing anti-
bodies, considered a primary correlate of protection.113,114 A
wide range of SARS-CoV-2-specific neutralizing antibody
titers have been reported after infection,115–120 with some
reports showing antibody titer levels in asymptomatic per-
sons that are, counterintuitively, lower than titer levels in
moderate or severe COVID-19.121–124 Of note, the ratio and
kinetics of SARS-CoV-2-specific anti-RBD, S1 and N anti-
body production and duration have been associated with
disease severity.125 A deeper understanding of antibody di-
versity, magnitude, timing, and duration is needed,120 pos-
sibly through use of high-throughput serological profiling.126

Age-related loss in coordinated immune response may also
contribute to COVID-19 severity.84 Drawing from earlier
work on viral RNA sensing and subsequent signaling path-
way analysis in flu infection of monocytes, interferon re-
sponse, and inflammatory response can become uncoupled
with aging, characterized by excessive inflammatory re-
sponse and attenuated interferon response.127,128 This un-
coupling may also be relevant in SARS-CoV-2 infection.129

Of note, older PLWH experience an exacerbated attenuation
in response to flu vaccination.38,39 These observations sug-
gest that more insight is needed into the disease trajectory in
PLWH compared with uninfected, as well as a deeper un-
derstanding of the potential compositional differences (i.e.,
innate and adaptive immunophenotypes) that underlie a
successfully coordinated immune response to SARS-CoV-2
infection.

Question 3: Should We Adapt the COVID-19 Model
for Disease Staging and Trajectory for PLWH?

Treatment approaches for COVID-19 are based on a dis-
ease model characterized by an early initial stage driven by
viral replication and expansion, followed at later stages by
coagulopathy and hyperinflammation.85,108,109,112 Based on
this model, antiviral (e.g., remdesivir) and antibody-based
(bamlanivimab, casirivimab and imdevimab) treatments are
initiated early in disease,130,131 whereas immunomodulators
and anti-inflammatory medications (e.g., dexamethasone,
tocilizumab, and baricitinib) and anticoagulants (e.g., hepa-
rin) are used at later stages.85,109

Whether one model of disease progression and trajectory
sufficiently accounts for clinical variation associated with
age, sex, race, and ethnicity, especially in the context of
PLWH remains a major challenge. Transitions in disease
from mild to moderate are likely to involve complex im-
munophenotypes112 that may differ in timing, composition,
and severity in PLWH. Information on disease stage when
targeting treatment was highlighted in the RECOVERY trial
findings of reduced mortality with dexamethasone treatment
in severe or critical COVID-19 but not milder disease.132 The
benefit of selected immunomodulators may depend on better

staging. Recent data from the REMAP-CAP trial support an
overall benefit of tocilizumab, an IL-6 receptor antagonist, in
critically ill COVID-19 patients,133 although prior studies
with tocilizumab showed mixed results, for example, benefit
in retrospective analyses,27 but not in prospective rando-
mized controlled trials (RCTs).134 Whether a selected im-
munomodulator is effective may therefore critically depend
on the stage of disease, the dosage and timing of the inter-
vention, as a more stratified approach to population selection.

Combinatorial treatment models are emerging that include
the use of antiviral agents with immunomodulators. Recent
combinatorial trials (e.g., the ACTT-2 trail that used the
antiviral remdesivir in combination with baricitinib, an in-
hibitor of interferon JAK signaling135) suggest that immune
modulators and antivirals may be better than the use of an
antiviral alone. However, considering that interferon-
mediated antiviral response may be critical in the early stages
of SARS-CoV-2 infection, and may be attenuated in older
persons, and in PLWH, there will need to be clear biomarker
profiles that distinguish the different disease stages to inform
targeted intervention. For example, the immunosuppressive
effects of baricitinib, while appearing useful later in disease,
may be detrimental during early stages of infection by de-
laying viral clearance and increasing vulnerability to sec-
ondary opportunistic infections.136

In the context of chronic inflammation and HIV infection,
it remains unclear whether antiviral and/or immunomod-
ulatory therapy should be initiated at a different time, follow
a different timeline or dosage and selection of anti-
inflammatory/immunomodulators be adapted in PLWH with
COVID-19. Multiple circulating biomarkers are in use or
proposed in COVID-19 disease risk assessment.137–139 Of
note, however, many of these biomarkers are chronically
dysregulated in PLWH, complicating diagnostics and treat-
ment outcome assessment. Finally, given the polypharmacy
in PLWH, drug interactions need to be considered when
initiating treatment. Although there are some data on ART
regimens and their use in COVID-19 (e.g., lopinavir–
ritonavir), more research on short- and long-term outcomes
with these and other ART medications with COVID-19-
targeted treatments is needed.140

Question 4: Will Assumptions About Vaccine Safety
and Efficacy Hold Up in PLWH?

The development of vaccine candidates for SARS-CoV-2-
driven COVID-19 has occurred at a profoundly accelerated
pace.124,141,142 However, from a historical perspective,
smallpox is currently the only fully eradicated virus affecting
the worldwide human population (e.g., polio is 99% eradi-
cated but persists in some regions).143 Therefore, eradicating
SARS-CoV-2 represents a significant global challenge, es-
pecially given that the only known hosts for smallpox and
polio are humans, whereas SARS-CoV-2 (and HIV-1) have
nonhuman animal reservoirs, permitting zoonotic transmis-
sion (i.e., bats/pangolins/minks to humans for SARS-CoV-2,
monkeys to humans for HIV-1).

Current vaccine designs include the mRNA genetic vac-
cines (e.g., Pfizer/BioNTech and Moderna/NIAID), non-
replicating adenoviral vectors (e.g., AstraZeneca/Oxford and
J&J/BIDMC), viral proteins with an adjuvant (e.g., Novovax
and Sanofi), and inactivated SARS-CoV-2 virus (e.g.,
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Sinovac).124,141,142 The COVID-19 vaccines based on
mRNA technology were the first in the United States to
obtain regulatory approval for use in humans, but multiple
(over 200) other vaccines are now in trials worldwide. Be-
cause the human trials are primarily designed with clinical
endpoints, rather than viremia endpoints, an important
question is whether vaccines are permissive for asymp-
tomatic carriage, allowing SARS-CoV-2 viremia to persist
in the human population, including among vaccinated per-
sons, although at reduced titers. Because persistence of
SARS-CoV-2 in the human population is likely, a syndemic
presence, along with HIV-1 must be considered. Sustained
immunity once vaccinated and effectiveness against viral
variants will also be challenges. Vaccine-induced memory,
a key factor in protective immunity, will require B cell, CD8
T cell, and CD4 T cell coordinated response. Vaccine-
elicited correlates of protection (e.g., neutralizing anti-
bodies), viral clearance (e.g., T cell-mediated responses),
and coordination (e.g., T cell-dependent B cell-mediated
response) in the context of PLWH, remain to be fully
characterized. The time frame for magnitude of response
and subsequent decay in circulating B and T memory spe-
cific to SARS-CoV-2 appears to be 3–8 months postinfec-
tion in unvaccinated persons but is heterogeneous.144,145

Whether the kinetics of decline and diversity of the memory
compartments will differ in PLWH is also unknown but
needs to be considered given incomplete immunocompe-
tence in PLWH.11,12

Although to a lesser extent than the HIV-1 pandemic,
viral quasispecies diversity in SARS-CoV-2 represents an
emerging challenge in identifying correlates of protec-
tion,146,147 with an expansion of SARS-CoV-2 variants
displaying altered phenotypes.148–150 Of importance, and in
contrast with HIV-1, SARS-CoV-2 has a proof-reading
function that limits, but does not eliminate, viral genetic
diversity. The SARS-CoV-2 nonstructural protein 14
(nsp14) is evolutionarily conserved across coronaviruses
and accompanies the viral replicase during RNA synthesis,
excising mis-incorporated ribonucleotides that prevent er-
ror propagation. This error-correcting capacity limits di-
versity.151 For example, in one study, a SARS-CoV-2
acutely infected patient had an average of one to four in-
trahost viral genetic variants detected.152 By contrast, in-
trahost variants in acute HIV-1 infection can be many fold
higher (e.g., 65 variants per person were identified in one
recent study153).

Although error-correcting capacity limits SARS-CoV-2
diversity, variants of concern (VOCs) are emerging with
the potential for viral escape mutants (e.g., positions E484
and N501)146,147 and altered phenotypes (e.g., D614G,148

B.1.1.7,149 and P.1150). Whether these VOCs and other
emerging variants have differing transmission and patho-
genic features in the context of prevalent HIV-1 infection
is unknown and underscores the need for representation of
PLWH in COVID-19 vaccine trials, surveillance studies,
and in clinical outcome assessments. Given the lack of
full immunocompetence among PLWH, the robustness
and complexity of antibody response to vaccination, as
well as potential differences in waning immunity and
memory function, especially among older PLWH and in
response to the evolving genetic landscape of VOCs should
be considered.

Question 5: Postacute COVID-19 Syndrome
and Long-Term Health Effects in PLWH?

As discussed, the clinical outcomes of acute COVID-19 can
be heterogeneous and range from mild or asymptomatic in
most cases (*80%) to moderate and more severe disease in
10%–20% of those infected, with acute infection and clinical
presentation occurring generally over the course of *3–4
weeks. Although most people survive SARS-CoV-2 infection,
symptoms can persist over 60+ days after initial symptom
onset, even despite the absence of detectable virus.154 As of
yet, there is no consensus definition of post-COVID-19 syn-
drome, thereby limiting estimates of prevalence.155 Recover-
ing persons variably experience symptoms, collectively
referred to as ‘‘long or long-haul COVID-19’’ or postacute
COVID-19 syndrome. Persisting conditions include substan-
tial fatigue and dyspnea, and increasingly, there are reports of
organ dysfunction in the heart, lungs, and brain. These per-
sisting conditions may be owing to direct tissue invasion
through ACE2 receptor-mediated infection, persistence of
virus for several months in distal sites such as the gut,156 and/or
secondary effects of immunologic response to infection (e.g.,
leukocyte infiltration, production of autoantibodies, and tissue
fibrosis). The duration and long-term health effects of those
persons experiencing long-haul COVID-19 remain unclear.

Complications can be multisystemic in post-COVID-19
syndrome.155 Cardiovascular complications can include
myocardial inflammation (i.e., inflammatory infiltrates) and
myocarditis (i.e., myocardium inflammation). For example, in
one German study of 100 patients, 60% had myocardial in-
flammation 70+ days postinfection, based on MRI.157 Whether
cardiac cells are directly infected or whether myocardial in-
flammation is owing to leukocyte infiltration into heart tissue
remains under investigation. Pulmonary dysfunction has been
observed 3 months after hospital discharge, with evidence of
pulmonary fibrosis.158,159 An Austrian study found that lung
damage was visible in >80% of patients 6 weeks after hospital
discharge, and >50% at 12 weeks after hospital discharge.160

Neurological manifestations of postacute COVID-19 syn-
drome include chemosensory dysfunction (smell/anosmia and
taste/ageusia). In addition, ‘‘brain fog’’ reported 2–3 months
after illness onset161 may be related to cytokines and chemo-
kines that cross the blood–brain barrier, affecting neurocog-
nitive function.162 Neurocognitive disorders might be
triggered by direct brain damage from cerebral hypoxia or
indirectly from immunologically induced neuroinflamma-
tion.155 Relatedly, cognitive and psychosocial distress and
loneliness may occur as a COVID-19-related stigma owing to
the consequent need for physical distancing and isolation.163

Finally, significant and persisting fatigue is often reported in
post-COVID-19 syndrome, with >50% of individuals report-
ing fatigue 4 weeks after initial symptom onset.154,164 Distin-
guishing COVID-19-related fatigue from age-related fatigue
and from chronic fatigue syndrome/myalgic encephalomyeli-
tis (i.e., CFS) is an active area of investigation.

Many clinics worldwide are now focusing efforts on post-
COVID-19 syndrome to better define clinical phenotypes
(e.g., clinics have been setup in the United Kingdom, in
Boston, United States, and in Modena, Italy). Of note, the
Post-Hospitalization COVID-19 Study (PHOSP-COVID) in
the United Kingdom will collect data on 10,000 patients for
a year, including data on various blood tests scans and
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biomarkers to identify diagnostic profiles.165 Integrating
PLWH into these clinical studies will be crucial to a better
understanding in COVID-19 long-term impact in PLWH.
Among aging PLWH, while living near-normal lifespans,
multiple health burdens persist including chronic inflamma-
tion, multimorbidity (e.g., cardiovascular disease, cognitive
impairment, fatigue, and frailty),166 and polypharmacy.28

Whether these health burdens in aging PLWH are exacer-
bated in those persons coinfected with SARS-CoV-2 or lower
meaningful clinical thresholds for diagnostic complications
associated with long-COVID-19 remains unclear.

Concluding Thoughts

Although great progress has been made in the under-
standing of SARS-CoV-2 and the disease it causes in humans,
in the development of more effective therapies and most
importantly in the development of effective vaccines, much
work remains in our understanding of the disease in special
populations including PLWH but also in ensuring equal ac-
cess to care and treatment to all.
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